Here you will find solutions of many problems on spoj. If you want solution of some problem which is not listed in blog or have doubt regarding any spoj problem (which i have solved) or any programming concept (data structure) you can mail me @ raj.nishant360@gmail.com

And my humble request to you all that don't copy the code only try to understand the logic and algorithm behind the code. I have started this because if you tried as hard as you can and still can't find any solution to the problem then you can refer to this.
You can read my answer how to start competitive programming CLICK HERE

Wednesday, October 21, 2015

DIV-Divisors

Divisors

Given below code is for div spoj or divisors spoj .

Hint:- very basic Sieve implementation .




/*
===================================================
Name :- Nishant Raj
Email :- raj.nishant360@gmail.com
College :- Indian School of Mines
Branch :- Computer Science and Engineering
Time :- 21 October 2015 (Wednesday) 09:46
===================================================*/
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair < int , int >
#define pb push_back
#define mp make_pair
#define mod 1000000009
bool check[1009];
vector<int> prime;
void shieve()
{
    for(int i=3;i*i<=1000;i+=2)
    {
        if(!check[i])
        {
            for(int j=i*i;j<=1000 ; j+=i)
                check[j]=1;
        }
    }
    prime.pb(2);
    int j=1;
    for(int i=3;i<=1000;i+=2)
    {
        if(!check[i]){
            prime.pb(i);
        }
    }
}
bool isPrime(int n){
    if(n == 1)
        return false;
    for(int i = 2 ; i*i <= n ; i++){
        if(n%i == 0)
            return false;
    }
    return true;
}
int main()
{
    shieve();
    int ma = -1;
    int pos = 0;
    for(int i=1;i<=1000000;i++)
    {
        int temp=i;
        int total=1;
        int k=0;
        for(int j=prime[k]; k < prime.size() && j*j<=temp;j=prime[++k])
        {
            int count=0;
            while(temp%j==0)
            {
                count++;
                temp/=j;
            }
            total *=count+1;
        }
        if(temp!=1)
            total*=2;
        k = 0;
        for(int j = prime[k] ;k<prime.size() &&  j*j <= total ; j = prime[++k]){
            if(total%j == 0){
                int x = total / j;
                if(x!= j && isPrime(x)){
                    pos++;
                    if(pos%9 == 0)
                        printf("%d\n", i);
                    break;
                }
            }
        }
    }
    return 0;
} 

No comments:

Post a Comment

Your comment is valuable to us