First of all read about segment tree and it basic functioning. You can read it from HERE .
Given below code is for GSS3 & GSS1 spoj .
Here i have implemented segment tree as given in above link.
Given below code is for GSS3 & GSS1 spoj .
Here i have implemented segment tree as given in above link.
//for GSS1 remove update part from main function #include <bits/stdc++.h> using namespace std; #define INT -1000000 int k; struct node { int result,pre,suf,sum; void split(node &a , node &b){} void merge(node a , node b) { sum = a.sum + b.sum; pre = max(a.pre , (a.sum + b.pre)); suf = max(b.suf , (b.sum + a.suf)); result = max(a.suf + b.pre,max(a.result , b.result)); } node() { result = pre = suf = sum = INT; } node(int temp) { result = pre = suf = sum = temp; } }tree[131080]; void update(int pos) { pos>>=1; while(pos!=0) { tree[pos].merge(tree[pos*2],tree[pos*2 + 1]); pos>>=1; } } node range_query(int root , int left_most , int right_most , int l ,int r) { if( l <= left_most && r >= right_most ) return tree[root]; int l_child = (root<<1) , r_child = l_child + 1 , mid = (left_most + right_most )>>1 ; tree[root].split(tree[l_child],tree[r_child]); node l_node = node() , r_node = node(); if(l <= mid) l_node = range_query(l_child , left_most , mid , l , r); if(r > mid) r_node = range_query(r_child , mid + 1 , right_most, l , r); tree[root].merge(tree[l_child] , tree[r_child]); node temp = node(); temp.merge(l_node,r_node); return temp; } int main() { int n,temp,l,r; scanf("%d",&n); k = ceil(log(n)/log(2)); int pos = (1<<k); int a[n]; for(int i=0;i<n;i++){ scanf("%d",&temp); tree[pos+i] = node(temp); update(pos+i); } int m,c; scanf("%d",&m); while(m--) { scanf("%d%d%d",&c,&l,&r); if(c==1) printf("%d\n",(range_query(1,1,pos,l,r)).result); else if(c==0)// Update part-> remove this condition for GSS1. { tree[pos+l-1] = node(r); update(pos + l -1); } } return 0; }
Gets Wrong Answer on SPOJ GSS1
ReplyDelete