Glorious Gamblers
below given code is for ins14e spoj or Glorious Gamblers spoj. This is simple problem of DP(as of LCS)
#include <bits/stdc++.h> using namespace std; #define MAX 510 #define gc getchar_unlocked //scan function is for fast input; inline void scan(int &x) { register int c = gc(); x = 0; int neg = 0; for(;((c<48 || c>57) && c != '-');c = gc()); if(c=='-') {neg=1;c=gc();} for(;c>47 && c<58;c = gc()) {x = (x<<1) + (x<<3) + c - 48;} if(neg) x=-x; } template <class T> T mi(T a, T b) { return a<b?a:b; } template <class T> inline T min_o(T a,T b,T c) { return mi(a,mi(b,c)); } template <class T> T m(T a, T b) { return a<b?b:a; } template <class T> inline T max_o(T a,T b,T c) { return m(a,m(b,c)); } int main() { int t; scan(t); while(t--) { double a[MAX][MAX]; int n,m,temp,i,j; scan(m);scan(n); for(i=1;i<=m;i++) for(j=1;j<=n;j++){ scan(temp); a[i][j] = temp; } for(i=m-1;i>=1;i--) a[i][n] += a[i+1][n]; for(j=n-1;j>=1;j--) a[m][j] += a[m][j+1]; for(i=m-1;i>=1;i--) { for(j=n-1;j>=1;j--) a[i][j] += 0.5*(min_o(a[i+1][j],a[i][j+1],a[i+1][j+1]) + max_o(a[i+1][j],a[i][j+1],a[i+1][j+1])); } printf("%0.6lf\n",a[1][1]); } return 0; }
No comments:
Post a Comment
Your comment is valuable to us